Novel, Synthetic RORγ Agonist Compounds as a Potential Anti-Cancer Approach

Xiao Hu1, Xikui Liu1, Rod Morgan1, Jacques Moisan1, Ling-Yang Hao1, Yahong Wang1, Brian Sanchez1, Charles Lesch1, Dick Bousley1, Clark Taylor1, Chad van Huis1, Thomas D. Aicher1, Peter Toogood1, Weiping Zou2, Gary Glick1, Laura Carter1
1) Lycera Corp 2) University of Michigan

BACKGROUND

- RORγ isoforms are nuclear receptor transcription factors that modulate gene expression
 - RORγ modulates expression of genes operating in pathways that enhance immunity and decrease immune suppression
 - RORγ is the master transcription factor for Th17/Tc17 differentiation
 - Th17/Tc17 cells have demonstrated stemness and plasticity which contribute to durable anti-tumor efficacy
- IL-17 is associated with good prognosis in some cancers
- Although IL-17 is the signature cytokine of Th17/Tc17, RORγ-expressing cells are polyfunctional effectors with multiple anti-tumor mechanisms

- Agonists enhance RORγ-dependent reporter activity

<table>
<thead>
<tr>
<th>Concentration Log [µM]</th>
<th>% Basal Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmpd A</td>
<td>Activation of Gal4 reporter construct in HEK 293T cells in presence of uracil acid to lower constitutive activity</td>
</tr>
<tr>
<td>Cmpd B</td>
<td>EC50 = 0.6 µM</td>
</tr>
<tr>
<td>Cmpd C</td>
<td>EC50 = 0.3 µM</td>
</tr>
</tbody>
</table>

- Selective against closely related nuclear receptors RORα and RORβ
- Non-promiscuous on receptor binding panel
- Active across species
- Excellent ADME properties
- Good oral PK profile suitable for QD dosing

RESULTS

RORγ Agonists Increase Immune Activation Mechanisms

1) Enhanced cytokine production from murine and human T cells

OT-1 splenocytes activated for 4 days with OVA peptide, TGFβ, IL-17A, IL-17F, compound A (10 µM): Cytokine titers determined by ELISA

<table>
<thead>
<tr>
<th>Cytokine (ng/ml)</th>
<th>Vehicle</th>
<th>Cmpd A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMCSF</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>IL-17F</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>IL-17A</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

2) Shifted Teffector:Treg ratio

OT-2 splenocytes activated for 4 days with OVA peptide, TGFβ, IL-17A, IL-17F, compound A (10 µM): IL-17A, IL-17F, IFNγ mRNA levels determined by qPCR

3) Reduced PD-1 expression and desensitization to checkpoint inhibition

OT-1 splenocytes activated for 4 days with OVA peptide, TGFβ, IL-17A, compound A (10 µM): %FOXP3+ cells

<table>
<thead>
<tr>
<th>% FOXP3+</th>
<th>Vehicle</th>
<th>Cmpd A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

4) In vitro treatment with RORγ agonist improves anti-tumor Tc17 responses

EG7 (EL4-OVA) cells implanted subcutaneously in C57BL/6 mice (Day -12). OT-1 splenocytes activated in vitro for 5 days with OVA peptide, IL-4, TGFβ, compound B (0.2 µM). On Day 8, 5 x 10^6 Tc17 cells were transferred. Tumor size monitored by caliper. Statistics were calculated using Mann Whitney test in Prism

- Mice receiving Tc17 + agonist cells:
 - More donor cells recovered from spleen and tumor
 - Tc17 express less PD-1

5) Oral administration of RORγ agonist inhibits MC38 tumor growth leading to long term survival

MC38 colon cancer cells (0.5 x 10^6) implanted subcutaneously in C57BL/6 mice. Dosing of compounds begins on Day 3 (100 mg/kg PO BID). Tumor size monitored by caliper starting on Day 10. Tumor growth statistics calculated using multiple t-tests; survival statistics calculated using Mantel-Cox log rank test

CONCLUSIONS

RORγ small molecule agonists:
- Have activities consistent with established RORγ biology
- Combine multiple anti-tumor mechanisms into a single therapeutic
- Demonstrate single agent activity in several models without evidence of enhanced tumor growth

High potency, bioavailable compounds are rapidly advancing as a promising immunotherapy approach